If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2-9y-9=0
a = 5; b = -9; c = -9;
Δ = b2-4ac
Δ = -92-4·5·(-9)
Δ = 261
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{261}=\sqrt{9*29}=\sqrt{9}*\sqrt{29}=3\sqrt{29}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-3\sqrt{29}}{2*5}=\frac{9-3\sqrt{29}}{10} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+3\sqrt{29}}{2*5}=\frac{9+3\sqrt{29}}{10} $
| 3x+5+121=180 | | x-4.080=-15.25 | | (X+6)+(6x)+(4x-2)=180 | | 5(3x-5)=10x+35 | | 25+10x=20 | | s/5+125=2,225s= | | 5x+30-3=37 | | 2x+34=4x+46 | | x-0.0631=-0.96 | | q/2+-11=-15 | | 3^2x-7*3^x=18 | | n/4=1=5 | | 2x+20=13+4x | | b-80.76=48.56 | | 27.75+(x)2=33.75 | | 188=n+80 | | 27-4f=-33 | | 6t+7=71 | | 3b-6=45+2b | | 45=3n+9 | | 4w^2+9w+4=0 | | 3(x+8)-2x=18 | | 7x-44+40=180 | | 10x-11+43=8x-20 | | y-14.4=-20.5 | | x/2+10=7 | | 6x-2+x=90 | | 73-4x=26 | | -7.3-z=-21.3 | | 20k+4+33k-9=0 | | x-14.4=-15.25 | | 3x/5=3.5 |